The Nutul Linear Belt

The Nutul Linear Belt is located within the Mesoproterozoic Tarnang NU-NU Belt, which is composed of two distinct tectonic zones: the Western and Eastern Granite-greenstone Zones (Koll, 2013). This belt is characterized by an east-west trend and is approximately 300 km long. The Nutul Linear Belt is a significant target for gold exploration due to its stratigraphic setting and the presence of a gold-mineralized belt (Koll, 2013). The belt is associated with an east-west-trending fault system, which has controlled both the structural and tectonic evolution of the area.

The Tarnang NU-NU Belt

The Tarnang NU-NU Belt is a major gold-mineralized belt located in southern Greenland. It is composed of two distinct tectonic zones: the Western and Eastern Granite-greenstone Zones (Koll, 2013). The Tarnang NU-NU Belt is characterized by an east-west trend and is approximately 300 km long. The belt is associated with a north-south-trending fault system, which has controlled both the structural and tectonic evolution of the area.

The Tarnang NU-NU Belt is a significant target for gold exploration due to its stratigraphic setting and the presence of a gold-mineralized belt (Koll, 2013). The belt is associated with an east-west-trending fault system, which has controlled both the structural and tectonic evolution of the area.

Gold Mineralisation at Nutul

Gold was first reported from the Tarnang NU-NU Belt in 1981. When Ranger Mines Ltd identified gold in grab samples up to 8.7 g/t Au, regional geologists-C. A. Mikkelsen and G. B. glitter up work by P. Nuose and Mikkelsen Ltd located samples up to 19.8 g/t Au. Through its subsidiary NHC Ltd, subsequently carried out exploration systematically through the 1980s which peaked out at 2.5 m containing 17.4 g/t Au in the surface profile and numerous 10+ g/t Au samples (Table 1). A significant discovery was made in 2003, where a mineralized zone was identified at Nutul, which has a strike length of approximately 3 km and a thickness of approximately 500 m. The zone is characterized by an east-west trend and is associated with a north-south-trending fault system, which has controlled both the structural and tectonic evolution of the area.

The Nutul Linear Belt is a significant target for gold exploration due to its stratigraphic setting and the presence of a gold-mineralized belt (Koll, 2013). The belt is associated with an east-west-trending fault system, which has controlled both the structural and tectonic evolution of the area.

Gold Mineralisation at Nutul

Gold was first reported from the Tarnang NU-NU Belt in 1981. When Ranger Mines Ltd identified gold in grab samples up to 8.7 g/t Au, regional geologists-C. A. Mikkelsen and G. B. glitter up work by P. Nuose and Mikkelsen Ltd located samples up to 19.8 g/t Au. Through its subsidiary NHC Ltd, subsequently carried out exploration systematically through the 1980s which peaked out at 2.5 m containing 17.4 g/t Au in the surface profile and numerous 10+ g/t Au samples (Table 1). A significant discovery was made in 2003, where a mineralized zone was identified at Nutul, which has a strike length of approximately 3 km and a thickness of approximately 500 m. The zone is characterized by an east-west trend and is associated with a north-south-trending fault system, which has controlled both the structural and tectonic evolution of the area.

The Nutul Linear Belt is a significant target for gold exploration due to its stratigraphic setting and the presence of a gold-mineralized belt (Koll, 2013). The belt is associated with an east-west-trending fault system, which has controlled both the structural and tectonic evolution of the area.

Gold Mineralisation at Nutul

Gold was first reported from the Tarnang NU-NU Belt in 1981. When Ranger Mines Ltd identified gold in grab samples up to 8.7 g/t Au, regional geologists-C. A. Mikkelsen and G. B. glitter up work by P. Nuose and Mikkelsen Ltd located samples up to 19.8 g/t Au. Through its subsidiary NHC Ltd, subsequently carried out exploration systematically through the 1980s which peaked out at 2.5 m containing 17.4 g/t Au in the surface profile and numerous 10+ g/t Au samples (Table 1). A significant discovery was made in 2003, where a mineralized zone was identified at Nutul, which has a strike length of approximately 3 km and a thickness of approximately 500 m. The zone is characterized by an east-west trend and is associated with a north-south-trending fault system, which has controlled both the structural and tectonic evolution of the area.

The Nutul Linear Belt is a significant target for gold exploration due to its stratigraphic setting and the presence of a gold-mineralized belt (Koll, 2013). The belt is associated with an east-west-trending fault system, which has controlled both the structural and tectonic evolution of the area.

Gold Mineralisation at Nutul

Gold was first reported from the Tarnang NU-NU Belt in 1981. When Ranger Mines Ltd identified gold in grab samples up to 8.7 g/t Au, regional geologists-C. A. Mikkelsen and G. B. glitter up work by P. Nuose and Mikkelsen Ltd located samples up to 19.8 g/t Au. Through its subsidiary NHC Ltd, subsequently carried out exploration systematically through the 1980s which peaked out at 2.5 m containing 17.4 g/t Au in the surface profile and numerous 10+ g/t Au samples (Table 1). A significant discovery was made in 2003, where a mineralized zone was identified at Nutul, which has a strike length of approximately 3 km and a thickness of approximately 500 m. The zone is characterized by an east-west trend and is associated with a north-south-trending fault system, which has controlled both the structural and tectonic evolution of the area.

The Nutul Linear Belt is a significant target for gold exploration due to its stratigraphic setting and the presence of a gold-mineralized belt (Koll, 2013). The belt is associated with an east-west-trending fault system, which has controlled both the structural and tectonic evolution of the area.

Gold Mineralisation at Nutul

Gold was first reported from the Tarnang NU-NU Belt in 1981. When Ranger Mines Ltd identified gold in grab samples up to 8.7 g/t Au, regional geologists-C. A. Mikkelsen and G. B. glitter up work by P. Nuose and Mikkelsen Ltd located samples up to 19.8 g/t Au. Through its subsidiary NHC Ltd, subsequently carried out exploration systematically through the 1980s which peaked out at 2.5 m containing 17.4 g/t Au in the surface profile and numerous 10+ g/t Au samples (Table 1). A significant discovery was made in 2003, where a mineralized zone was identified at Nutul, which has a strike length of approximately 3 km and a thickness of approximately 500 m. The zone is characterized by an east-west trend and is associated with a north-south-trending fault system, which has controlled both the structural and tectonic evolution of the area.